

Some lower back pain, here and there

Dr. Sarita Said-Said

Dr. Ali Habib

University of California Irvine

History of Present Illness

History of Present Illness:

- 76 year-old woman \rightarrow 6 years of constant lower back pain,
 - present at rest and worse with standing/walking.
- Unable to stand straight.
- Cannot climb stairs secondary to the pain.
- Few falls.
- Has had a few years of breathing difficulty.
- Denies ptosis, diplopia, speech or swallowing impairment, weakness in upper extremities or sensory loss.

Further History

Past medical History:

- Strokes, two in past 7 years
 - Alexia and agraphia
 - Hand clumsiness.
- COPD.
- Hypertension.
- Hyperlipidemia.

Surgical History:

- Left hip fracture repair (had fall).
- Hysterectomy.

Family History:

- Father: died at age 86, dementia.
- Multiple siblings who were smokers.

Social History:

- Has never smoked, but reports second hand smoke exposure.
- Competitive Ballroom dncer.

We now invite Dr. Jeffrey Rosenfeld to elicit further history and examine the patient

PFTs:

FVCs in the 50-70% in prior PFTs. In 5/29/2019: FVC = 35% predicted.

Neurological exam:

- CN: normal.
- Motor: Reduced bulk of paraspinal muscles in the lumbar region. Normal bulk in limbs.
 - Strength:
 - BUE: 5/5
 - BLE, symmetric:
 - 4/4 in hip flexors,
 - 2/2 in hip extensors
 - 5-/5 in knee flexion
 - 5-/5 in dorsiflexion

- Sensory: mildly reduced vibratory sense distally in lower extremities.
- Coordination: mild action tremor in the left hand.
- Gait/Posture: Forward stooped posture. Marked difficulty standing from a seated position with arms crossed. Narrow-based with adequate stride. There is pelvic dipping with casual gait. Lumbar curve is reduced/ straightened. She is able to tiptoe and stand on her heels.

- Labs:
 - CK 196 U/L
 - AChR Antibody:
 - Binding: <0.30 (<0.30 nmol/L)
 - Blocking: <15 (<15%)
 - Normal ESR, vitamin B12.
- MRI of the brain (from previous stroke): small acute left periventricular white matter infarct.

- MR imaging of the lumbar spine without contrast, 8/24/2016:
 - Severe atrophy and fatty replacement of lumbar paraspinous muscles and bilateral iliopsoas.

Axial T1

Differential? What would you do?

Studies – EMG/NCS

<u>SNC</u>

Nerve / Sites	Rec. Site	Onset Lat	Peak Lat	Amp	Distance	Velocity	Temp.			
		ms	ms	μV	mm	m/s	°C			
R Median - Digit II (Antidromic)										
Wrist	Dig II	2.55	3.39	39.5	130	51	31.5			
R Ulnar - Digit V (Antidromic)										
Wrist	Dig V	1.93	2.66	36.9	110	57	31.6			
R Sural - Ankle (Calf)										
Calf	Ankle	2.92	3.80	8.3	140	48	28.9			
L Sural - Ankle (Calf)										
Calf	Ankle	3.18	4.01	8.1	140	44	32.9			

Studies – EMG/NCS

MNC

Nerve / Sites	Muscle	Latency	Amplitude	Duration	Area	Segments	Distance	Lat Diff	Velocity	Temp.
		ms	mV	ms	mVms		mm	ms	m/s	°C
R Median - APB										
Wrist	APB	3.59	6.4	4.06	15.5	Wrist - APB	70			31.6
Elbow	APB	6.41	6.3	4.58	15.0	Elbow - Wrist	185	2.81	66	31.9
R Ulnar - ADM	Λ									
Wrist	ADM	3.02	9.5	4.53	25.1	Wrist - ADM	70			32.2
B.Elbow	ADM	6.20	8.9	4.53	23.0	B.Elbow - Wrist	195	3.18	61	32.4
A.Elbow	ADM	7.76	9.0	4.74	24.0	A.Elbow - B.Elbow	105	1.56	67	32.4
R Peroneal - I	EDB									
Ankle	EDB	3.65	6.6	4.74	17.0	Ankle - EDB	80			28.5
Fib head	EDB	9.01	6.2	5.16	16.6	Fib head - Ankle	275	5.36	51	28.7
Pop fossa	EDB	10.83	6.2	5.10	16.4	Pop fossa - Fib head	95	1.82	52	28.8
R Tibial - AH										
Ankle	AH	5.63	6.9	4.64	11.8	Ankle - AH	80			28.9
Pop fossa	AH	11.20	5.1	6.20	12.2	Pop fossa - Ankle	370	5.57	66	29

Studies – EMG/NCS

Needle EMG										
	Spontaneous				Volitional MUAPs					
Muscle	IA	Fibs/PSW	Fasc	Other	Dur.	Amp	Poly	Recruit	Rate	Comment
R. Tibialis	Normal	None	None		Normal	Normal	None	Normal	Normal	
anterior										
R.	Normal	None	None		Normal	Normal	None	Normal	Normal	
Gastrocnemius										
(Medial head)										
R. Vastus	Normal	None	None		Normal	Normal	None	Normal	Normal	
lateralis		\frown								
R. Lumbar	Normal	2+	None		Normal					
paraspinals	/			\frown						
(mid)										
R. Lumbar	Norma	None	None	CRD;	Normal					
paraspinals				?Myotonic						
(low)				Discharges						
R. Lumbar	Normal	2+	None		Normal					
paraspinals										
(up)										

Diagnostic tests were performed

- Alpha glucosidase enzyme activity: **2.40** (>3.88 pmol/punch/hr)
- Genetic testing:
 - heterozygous c-32-13T>G: single nucleotide change within the first intron of GAA gene, commonly observed in adult-onset Pompe disease, affects splicing of exon 2
 - heterozygous duplication c.840_842dup in exon 4: results in duplication of Arg281. Does not alter reading frame. Not previously reported as mutation causing Pompe OR as known polymorphism in the population.

• MRI of the femur, bilateral 3/26/2018: Fatty atrophy and mild muscle edema of multiple muscle groups.

Diagnostic tests were performed

Diagnostic tests were performed

• Biopsy of right vastus lateralis 5/11/2019:

Muscle biopsy of the right vastus lateralis muscle

Muscle biopsy of the right vastus lateralis muscle

- Pompe disease → single disease continuum with variable rates of disease progression and different ages of onset.
- Lysosomal acid alpha-glucosidase (GAA) deficiency.
 - glycogen storage disease type II
 - acid maltase deficiency (AMD)
- Autosomal recessive disorder \rightarrow considerable allelic heterogeneity.
 - Mutations in the gene encoding lysosomal acid alpha-1,4-glucosidase (GAA), located at 17q25.2-q25.3
- Estimated incidence of GAA deficiency is 1 in 40,000.

Clinical presentation:

• Proximal muscle weakness and atrophy \rightarrow proximal limbs, axial muscles, respiratory function.

Classification:

- Infantile-onset Pompe disease (IOPD) \rightarrow < age 12 months + cardiomyopathy. \rightarrow Median onset: 4 months
 - hypotonia, generalized muscle weakness, feeding difficulties, failure to thrive, respiratory distress, and hypertrophic cardiomyopathy.
 - Death by age 2 without treatment → progressive left ventricular outflow obstruction and respiratory insufficiency.
- Late-onset Pompe disease (LOPD)
 - A) Onset < age 12 months WITHOUT cardiomyopathy.
 - B) Onset > 12 months.
 - Proximal muscle weakness & respiratory insufficiency.

- Diagnosis:
 - Deficiency of acid alpha-glucosidase enzyme activity.
 - Rapid and sensitive → dried blood spots, muscle, peripheral leukocytes or skin fibroblast cultures.
 - Biallelic pathogenic variants in GAA on molecular genetic testing.
 - Single gene testing, targeted analysis for pathogenic variants, multigene panel.
 - Newborn screen:
 - Positive screen + supportive physical exam/Echo/CK.
 - Confirm with molecular genetic testing or GAA enzyme activity.

- Supportive tests:
 - Electrophysiologic studies \rightarrow myopathy on EMG.
 - Needle EMG of the paraspinal muscles.
 - **CK levels:** elevated in IOPD and some with LOPD.
 - Urinary oligosaccharides: tetrasaccharide \rightarrow highly sensitive in IOPD.
 - Muscle biopsy:
 - Increased acid phosphatase activity and vacuoles are the primary findings.
 - Most vacuoles are filled with glycogen, almond shape.
 - Adult form of the disease has fewer fibers with vacuoles (10-50%) than the infantile or childhood forms (near 100% and 75%, respectively).
 - Vacuoles can be absent or present in a very reduced amount of fibers.

- Management:
 - Enzyme replacement therapy Clinical trials.
 - Multidisciplinary approach
 - Cardiology: cardiomyopathy and conduction abnormalities
 - Pulmonology: respiratory insufficiency, assistive devices, tracheostomy
 - Audiologic evaluation,
 - Nutrition
 - Disability inventory
 - Genetic counseling

Titinopathy

Axial Myopathies

Axial myopathies divided according to age of onset **Congenital to 0 years** >10-25 >25 DNM2 myopathy Calpainopathy SLONM Dystrophinopathy DM2 Calpainopathy FHL1 myopathy Dysferlinopathy (DM2) Lamin A/C myopathy (FHL1 myopathy) IBM /PM (MFM) Lamin A/C myopathy INEM RYR1 myopathies Matrin-3 myopathy MFM SEPN1 myopathy Mitochondrial myopathy RYR1 myopathies TPM2/3 myopathies MYH7 myopathy VCP myopathy

Witting, N., et al. (2016). "Axial myopathy: an overlooked feature of muscle diseases." Brain 139(Pt 1): 13-22.

Axial Myopathies

Axial myopathies divided according to accompanying features

Respiratory affection	Cardiac involvement	Dropped head	Pain	Asymmetry
SEPN1 myopathy (DM1) FHL1 myopathy GSDII Matrin 3 myopathy MFM Titinopathy	FHL1 myopathy DM1 Dystrophinopathy Lamin A/C myopathy MFM NLSDM Titinopathy	DM1 FSHD1 IBM/PM/DM Lamin A/C myopathy Matrin-3 myopathy Matrin-3 myopathy Radiation VCP myopathy Calpainopathy DM1 FSHD1 MFM PM/DM RYR1 SLONM	Adult onset RYR1 myopathies DM2 DM/PM FSHD1	Dysferlinopathy FHL1 myopathy FSHD1 NLSDM

Witting, N., et al. (2016). "Axial myopathy: an overlooked feature of muscle diseases." Brain 139(Pt 1): 13-22.

- Paraspinal weakness and respiratory affection should raise suspicion for Pompe Disease and prompt testing.
- Muscle MRI should be considered as a diagnostic tool → paraspinal and limb muscles.
 - Quantify fat infiltration and muscle edema.
 - Pattern of muscle involvement.
- Characteristic features on muscle biopsy may be absent or be subtle.

- Ausems, M., et al. (1999). "Frequency of glycogen storage disease type II in The Netherlands: implications for diagnosis and genetic counselling." <u>European Journal of Human Genetics</u> 7(6): 713-716.
- Van Den Hout, H. M. P., et al. (2003). "The Natural Course of Infantile Pompe's Disease: 20 Original Cases Compared With 133 Cases From the Literature." 112(2): 332-340.
- Hobson-Webb LD, Dearmey S, Kishnani PS. The clinical and electrodiagnostic characteristics of Pompe disease with post-enzyme replacement therapy findings. Clin Neurophysiol 2011; 122: 2312–17.
- Werneck, L. C., et al. (2013). "Muscle biopsy in Pompe disease." <u>Arq Neuropsiquiatr</u> 71(5): 284-289.
- Laforet P, Doppler V, Caillaud C, Laloui K, Claeys KG, Richard P, et al. Rigid spine syndrome revealing late-onset Pompe disease. Neuromuscul Disord 2010; 20: 128–30.
- Witting, N., et al. (2016). "Axial myopathy: an overlooked feature of muscle diseases." <u>Brain</u> 139(Pt 1): 13-22.

Thank You!