CASE VICIEITE

UC IRVINE NEUROMUSCULAR COLLOQUIUM

Paul Sampognaro, MD
UCSF Neuromuscular Fellow

NO DISCLOSURES

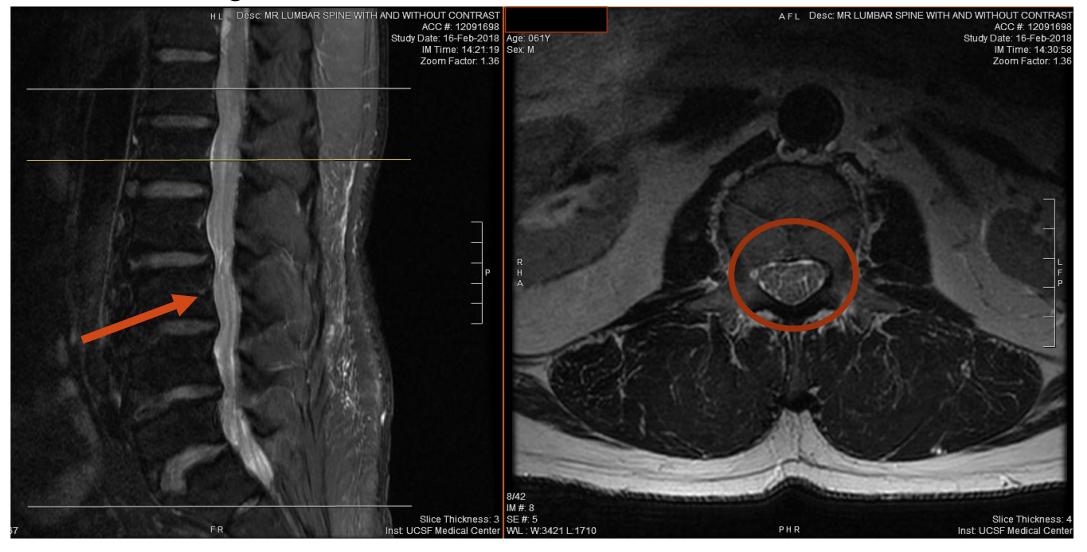
Clinical Case

- 61 year-old man
 - PMH: hypertension and vision loss (bilateral non-arteritic ischemic optic neuropathies)
 - Developed slowly progressive low back pain and a worsening gait.
- Neurologic Exam:
 - Moderate weakness of distal leg muscles (tibialis anterior, gastrocnemius, intrinsic foot muscles)
 - Reduced sensation from the ankles downward
 - Absent Achilles reflexes.

EMG/NCS

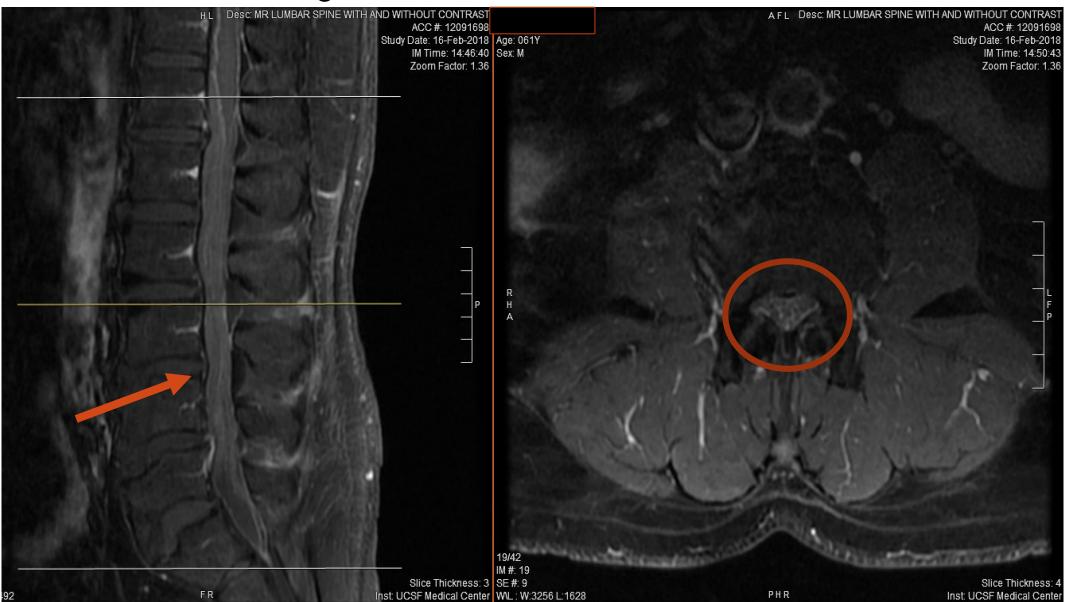
Nerve Conduction Studies: 1) **intact SNAPs**, 2) an increase in left tibial minimum-F-wave latencies and 3) an absent right peroneal F-wave response.

EMG Summary Table								
	Spontaneous		Volitional MUAPs				Max Vol Act	
Muscle	Fib/PSW	Fasc	Dur.	Amp	Poly	Recruit	Interference	Max Freq
R. Tibialis anterior	None	None	14-20	1.0-2.0	None	Mod red	Mod dec	40 Hz
R. Gastrocnemius (Medial head)	None	None	14-20	1.0-2.0	None	Normal	Full	40 Hz
R. Vastus medialis	None	None	8-12	0.6-1.6	None	Normal	Full	40 Hz
R. Tensor fasciae latae	None	None	14-20	0.8-2.2	None	Mild red	Mild	40 Hz
R. Gluteus maximus	None	None	12-18	1.0-2.0	20%	Mild red	<u>Mild</u>	40 Hz
L. Tibialis anterior	None	None	14-20	0.6-1.6	100%	Sev red	Sev dec	40 Hz
L. Gastrocnemius (Medial head)	None	None	14-20	1.0-2.0	None	Mild red	Mild	40 Hz
L. Vastus medialis	None	None	8-12	0.6-1.6	None	Normal	Full	40 Hz
L. Tensor fasciae latae	None	None	14-20	1.0-2.0	None	Mild red	Mild	40 Hz
L. Gluteus maximus	None	None	14-20	1.0-2.0	None	Mild red	Mild	40 Hz


IMPRESSION: bilateral chronic L5 and S1 radiculopathies

MRI of the Lumbar Spine

T2 Sagittal


T2 Axial

Tl Post-Con Sagittal

Tl Post-Con Axial

Lumbar Puncture

SPINAL FLUID			
Tube Number	1		
Appearance, CSF	Hazy		
Add'l Info, CSF	A reference ran		
Glucose, CSF	40		
IgG, CSF	84.7	^	
Albumin, CSF	875.0	^	
IgG Index	0.6		
Oligoclonal Bands	Quantity not su		
Oligoclonal Bands	Quantity not su		
Oligoclonal Bands,	Quantity not su		
Protein, Total, CSF	1,164	^	
Xanthochromia	Slight		
WBCs, CSF	195	^	
RBCs, CSF	720	^	
CSF for MD Review	NO		
Neuts, CSF	2		
Lymphs, CSF	61		
Mono, Histiocytes	37		
Conc Smear,CSF; #	100		

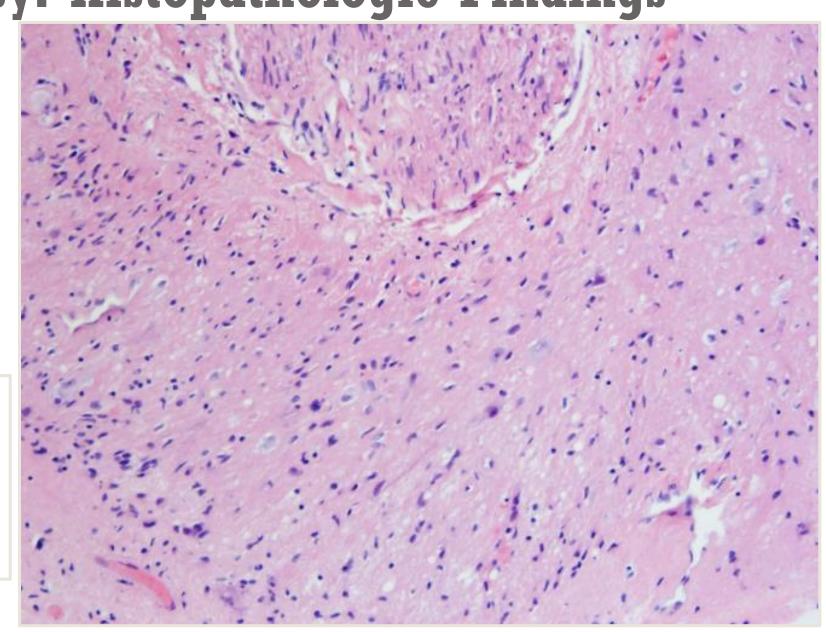
Differential diagnosis: malignancy, atypical infection, or atypical variant of chronic inflammatory demyelinating neuropathy (CIDP).

Upon further history taking, the patient revealed:

- history of intrathecal stem cell infusions to treat his vision loss.
- 2 clinics one in China and one in Russia.
- In China, he also received intravenous and subcutaneous (above the eyes) stem cell infusions.

He experienced no improvement in his vision from these treatments.

6 months later, he developed his presenting neurologic symptoms.

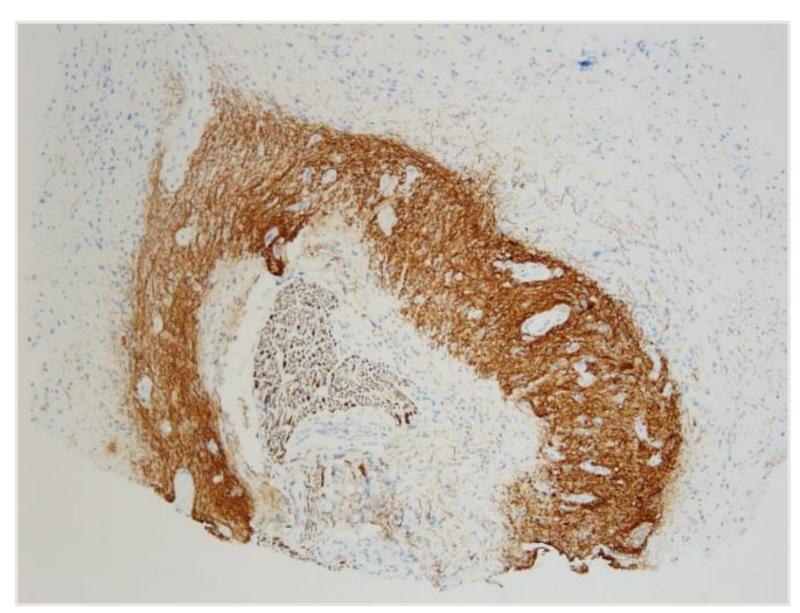


Nerve Biopsy: Histopathologic Findings

Right S1 Nerve Root

Hematoxylin & Eosin (H&E) (200X):

spinal nerve root (top)
surrounded by aberrant
glioneuronal tissue, with
accompanying chronic
inflammatory infiltrate

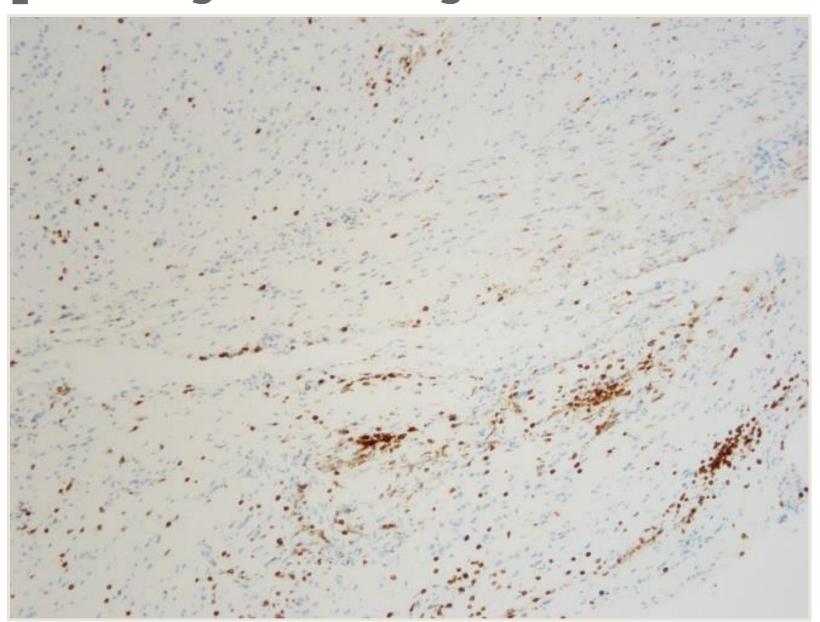


Histopathologic Findings

Right S1 Nerve Root

Immunohistochemical stain (100X) for neurofilament protein (NFP)

Nerve root (center) with surrounding aberrant glioneuronal tissue with a bilayered appearance



Histopathologic Findings

Right S1 Nerve Root

Immunohistochemical stain for **CD3 (200x)**

Scattered T lymphocytes
within the aberrant
glioneuronal tissue

Pathology Report

Major Finding: "aberrant glioneuronal tissue encasing the S1 sacral nerve root, with an accompanying T lymphocyte inflammatory infiltrate"

UCSF500 Next Generation Sequencing (Cancer Panel - sequences ~ 500 genes)

"This sequencing demonstrates ~ 90 nonsynonymous variants present in the aberrant glioneuronal tissue but not in the patient sample.

These findings are consistent with the aberrant glioneuronal tissue being **derived from a foreign human donor**.

DNA sequencing of the CSF lymphocytes is pending ...

Conclusion: Smoldering Nerves from Stem Cell Tourism

Emerging complications from stem cell therapies are being increasingly reported. These include (but are not limited to) the development of fever, meningitis, glioproliferative masses, and death.

Our case → host-versus-graft response to aberrant, differentiated glioneuronal tissue.

Further characterization of the CSF lymphocytes is underway for confirmation and to guide management.

This complication should raise concerns for the stem cell field and should be recognized and addressed by both physicians and basic scientists alike.

Thanks!

UCSF Neurology:

John Engstrom, MD

Denise Feng, RN

UCSF Neuropathology:

Marta Margeta, MD PhD

Emily Sloan, MD PhD

UCSF Neuroradiology:

Cynthia Chin, MD

