Live Case #3

*Frank Diaz M.D. Ph.D., *Negar Khanlou, M.D., and *Perry Shieh, M.D. Ph.D.

*Department of Neurology, *Department of Pathology UCLA Medical Center

Clinical Presentation

- This patient is an 18-year-old right-handed male with a history of high arched feet, curled toes, and toe walking.
- The family noted toe walking and slower running than his peers starting at 5 years of age.
- At age 13, he started tripping more and developed pain in his feet on ambulation. He underwent bilateral Achilles tendon lengthening surgeries.
- Persistent walking difficulties prompted a new referral to orthopedic surgery.
- During the initial visit, he reported his toes catch frequently, resulting in near falls, and uses railing for assistance when climbing stairs. He also reported muscle cramps in both hands.
- He denied tingling-like sensations, but did report numbness and pain in his feet in cold weather.
- He denied swallowing issues, shortness of breath, orthopnea, or double vision

Review of Systems Family History Social History

Additional History Physical and Neurological Examination

Electrodiagnostic Findings

Sensory NCSs						L L			0					
Site		Onset (m	s)	Peak (ms)		O-P Amp		(µV)	Site			Dist (cm)		Vel (m/s)
Right Median Anti Sensory (2nd Digit)														
Wrist		2.6	2.6		3.6		36.9		2nd Dig	Digit		13.0		50
Right Ulnar Anti Sensory (5th Digit)														
Wrist		2.1		3.0)		29.0		5th Dig	it		11.0		52
Motor NCSs														
Site		Onset	(ms)	O-P Am		mV)	Site1		Site2			Dist (cm)		Vel (m/s)
Right I	Media	n Motor (A	bd Poll	Brev)										
Wrist		4.9	4.9		8.5		Elbow		Wrist			23.0		51
Elbow		9.4	9.4		8.2									
Right I	Peron	eal Motor (Ext Dig	Brev)										
Ankle		NF	NR		NR									
Right Tibial Motor (Abd Hall Brev)														
Ankle		9.	9.1		1.0		Knee		Ankle					
Right Ulnar Motor (Abductor Digit Minimi)														
Wrist		3.	3.0		7.7			B Elbow				22.5		52
B Elbow		7.3	7.3		7.6			A Elbow		WC		9.0		50
A Elbow		9.	9.1		7.6									
EMG	Side	Muscle	Nerve	Root	Ins Act	Fibs/P SW	Fasc	Other	Amp	Dur	Poly	Recrt		
	Right	AntTibialis	Dp Br Peron	L4-5	Incr	2+	None	None	Nml	Nml	Nml	Nml		

A diagnostic test was performed.

Sural Nerve Biopsy

Sural Nerve Biopsy: Electron Microscopy (EM)

Methylene Blue

Sural Nerve Biopsy: Electron Microscopy

Sural Nerve Biopsy

H&E

Neurofilament

Genetic Testing

- Two VUS in the GAN (gigaxonin) gene:
 - c.1506G>T (p.Trp502Cys) (maternal)
 - c.944C>T (p.Pro315Leu) (paternal)
- c.944C>T has been previously reported by Bruno et. al. 2004 and Houlden et. al. 2007
- c.1506G>T has not been reported.

- In its classic form, it is a severe autosomal recessive disease that affects both the peripheral and central nervous system
- First Described in 1972
- Very rare
- Only about 50 families have been described in the medical literature
- Likely underdiagnosed

- The gigaxonin gene *GAN* was identified as the mutated gene in giant axonal neuropathy in 2000 (Bomont et. al. Nat Genet). Located in chromosome 16q24
- Composed of an amino-terminal BTB (for Broad-Complex, Tramtrack and Bric a brac) domain followed by six Kelch repeats

• More than 40 different mutations have been reported.

 E3-ligase adaptor that works as part of the ubiquitin-proteasome system and plays a role in the breakdown of intermediate filaments

Loss of GAN causes accumulation of intermediate filaments-> axonal accumulation and axonal

From Pr P Landrieu Teased axons with focal swellings (Arrows).

Source. https://neuromuscular.wustl.edu

nature

Vol 438 10 November 2005 doi:10.1038/nature04256

Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival

Elizabeth Allen¹*, Jianqing Ding¹*, Wei Wang¹, Suneet Pramanik¹, Jonathan Chou¹, Vincent Yau¹ & Yanmin Yang¹

• Physical appearance: kinky hair, high forehead, pale complexion, and long eyelashes

Source. https://blog.timesunion.com

Source. https://irp.nih.gov

Source. https://globalgenes.org

Giant Axonal Neuropathy (GAN): Kinky hair

Our patient's family

- Physical appearance: red and kinky hair, high forehead, pale complexion, and long eyelashes
- Symptoms: usually begin before age 5 with gait disturbances and frequent falls due to both weakness and ataxia; numbness is present as well
- **CNS involvement**: cerebellar dysfunction, spasticity, and **optic atrophy**; hearing can be affected; intellectual disability, seizures, and dementia can occur
- Autonomic nervous system involvement: neurogenic bladder, constipation, heat intolerance, hypohidrosis or anhidrosis
- Most children become wheelchair dependent in the 2nd decade. Death usually
 occurs in the 3rd decade most often due to respiratory failure.

Giant Axonal Neuropathy (GAN): Findings

- NCS/EMG: SNAPs are typically absent; motor NCSs can be normal or with amplitude reductions
- Imaging Findings:
 - White matter changes, atrophy of the cerebellum, and optic tracts

Demir et. al. J Neurol Neurosurg Psychiatry 2005

Giant Axonal Neuropathy (GAN): Our Patient

Giant Axonal Neuropathy (GAN): Diagnosis

- Diagnosis: Nerve biopsy and genetic testing
- Nerve Biopsy: Classic findings include axonal loss, giant axon swelling, densely packed bundles of neurofilaments

From Pr P Landrieu

From Pr P Landrieu Enlarged unmyelinated, or thinly myelinated, axons.

From Pr P Landrieu Teased axons with focal swellings (Arrows).

Source. https://neuromuscular.wustl.edu

What about Treatment?

A Phase I Study of Intrathecal Administration of scAAV9/JeT-GAN for the Treatment of Giant Axonal Neuropathy

- ClinicalTrials.gov Identifier: NCT02362438
- PI: Dr. Carsten Bonnemann
- NIH Clinical Center in Bethesda, MD
- Utilizes an AAV9 vector

- Delivered intrathecally
- Purpose is to primarily target the spinal cord and brainstem motor neurons, as well as the dorsal root ganglion

Acknowledgements

UCLA Neuromuscular Medicine Nasheed Jamal Perry Shieh Payam Soltanzadeh Melissa Spencer

UCLA Pathology Department Negar Khanlou

Cedars-Sinai Medical Center Neuromuscular Medicine Matthew Burford